Reaction of $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ with Tricyclohexylphosphine and Structure of $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$.Toluene. μ_{4}-Phenylphosphinidene Rotation as a Consequence of Thermodynamic Product Control

By Ming-Jaw Don and Michael G. Richmond*
Center for Organometallic Research and Education, Department of Chemistry, University of North Texas, Denton, TX 76203, USA
and William H. Watson* and Ante Nagl \dagger
Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA

(Received 8 February 1990; accepted 25 June 1990)

Abstract

Di- μ-carbonyl-heptacarbonyl-bis ($\mu_{4^{-}}$ phenylphosphinidene)-(tricyclohexylphosphine)tetracobalt $(\mathrm{I})(4 \mathrm{Co}-\mathrm{Co})$-toluene $\quad(1 / 1), \quad\left[\mathrm{Co}_{4}(\mathrm{CO})_{9}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right)_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] . \mathrm{C}_{7} \mathrm{H}_{8}, \quad \mathrm{C}_{39} \mathrm{H}_{43} \mathrm{Co}_{4} \mathrm{O}_{9} \mathrm{P}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, $M_{r}=1076 \cdot 57$, monoclinic, $P 2_{1}, a=10 \cdot 634$ (1), $b=$ 20.674 (4) $, \quad c=12 \cdot 189(2) \AA, \quad \beta=112 \cdot 44(1)^{\circ}, \quad V=$ 2476.8 (7) $\AA^{3}, Z=2, D_{x}=1.443 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \mu=14.59 \mathrm{~cm}^{-1}, \quad F(000)=1104, \quad T=$ $295 \mathrm{~K}, R=0.044$ for 2976 independent reflections. The rectangular array of Co atoms is planar and is capped by a pair of μ_{4}-phenylphosphinidene groups to give a closo polyhedral core. The substitution of a CO ligand by a PCy_{3} (where $\mathrm{Cy}=$ cyclohexyl) ligand causes a $\sim 0.13 \AA$ elongation of the non-carbonylbridged $\mathrm{Co}-\mathrm{Co}$ bond adjacent to the PCy_{3} group in addition to a $\sim 90^{\circ}$ twist in one of the $\mu_{4^{-}}$ phenylphosphinidene groups. The adopted structure of $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$ is discussed with respect to thermodynamic product control.

Introduction. The reaction of phosphines with the tetracobalt cluster $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ has been extensively studied in the last few years. Efficient CO substitution by phosphines has been shown to arise from both paramagnetic and diamagnetic cluster species. For example, facile electron-transfer chain (ETC) catalysis is observed from the coordinatively unsaturated cluster $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}^{-}$. The chaincarrying cluster in this ETC reaction is readily obtained from $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}^{--}$following the one-electron reduction of $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ and dissociative CO loss (Richmond \& Kochi, 1986a, 1987a). However, the majority of reports describe associative thermal reactions of $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ with phosphines (Ryan, Pittman, O'Connor \& Dahl,

[^0]1980; Richmond \& Kochi, 1986b, 1987b; Schulman, Richmond, Watson \& Nagl, 1989). In this genre of cluster it has been suggested that thermodynamic product control is important in determining the disposition of the μ_{4}-phenylphosphinidene groups relative to the ancillary phosphine ligands in polysubstituted clusters (Don, Richmond, Watson \& Nagl, 1989a,b). If severe intramolecular contacts exist between the ancillary phosphines and the cluster, a μ_{4}-phenylphosphinidene group twists away from its preferred bisection of the carbonyl-bridged Co-Co bonds. All of the structurally characterized clusters have involved bis-, tris- and tetrakissubstituted clusters that adopt solid-state structures with minimized intramolecular contacts between the phosphine ligands and the μ_{4}-phenylphosphinidene groups. The generality of thermodynamic product control has not, however, been tested with monosubstituted derivatives. Accordingly, we have studied the reaction of $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ with PCy_{3} and report the single-crystal X-ray determination of $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$ which establishes the disposition of the μ_{4}-phenylphosphinidene group cis to the PCy_{3} ligand.

Experimental. To 0.50 g of $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mu_{4}-\mathrm{PPh}\right)_{2}$ $(0.68 \mathrm{mmol})$ in 100 ml of THF was added 0.21 g of $\mathrm{PCy}_{3}(0.75 \mathrm{mmol})$, followed by the addition of a few drops of $0.25 M$ sodium benzophenone ketyl solution (THF). The solution was stirred for several

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$
${ }^{*}$ Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.
hours at room temperature, after which time TLC examination (benzene/petroleum ether, 8:2 v/v) revealed $\sim 70 \%$ conversion to the monosubstituted cluster $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$. Chromatography over silica gel using benzene/petroleum ether ($8: 2$ v / v) afforded pure $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$ which was recrystallized from toluene/heptane ($1: 1 \mathrm{v} / \mathrm{v}$) at 253 K to give 0.41 g (61% yield) of dark red $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$. Crystals suitable for X-ray diffraction analysis were selected from this

Table 2. Bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$

$\mathrm{Co}(1)-\mathrm{Co}(2)$	$2 \cdot 544$ (2)	$\mathrm{Co}(1)-\mathrm{Co}(4)$	2.806 (1)
$\mathrm{Co}(2)-\mathrm{Co}(3)$	$2 \cdot 677$ (1)	$\mathrm{Co}(3)-\mathrm{Co}(4)$	$2 \cdot 526$ (1)
$\mathrm{Co}(1)-\mathrm{P}(1)$	2.232 (2)	$\mathrm{Co}(1)-\mathrm{P}(2)$	$2 \cdot 277$ (2)
$\mathrm{Co}(2)-\mathrm{P}(2)$	$2 \cdot 263$ (3)	$\mathrm{Co}(2)-\mathrm{P}(1)$	$2 \cdot 239$ (3)
$\mathrm{Co}(3)-\mathrm{P}(2)$	2.318 (2)	$\mathrm{Co}(3)-\mathrm{P}(1)$	$2 \cdot 231$ (3)
$\mathrm{Co}(4)-\mathrm{P}(1)$	$2 \cdot 241$ (3)	$\mathrm{Co}(4)-\mathrm{P}(2)$	2.275 (2)
$\mathrm{Co}(1)-\mathrm{P}(3)$	2.296 (2)	$\mathrm{P}(1) \cdots \mathrm{P}(2)$	$2 \cdot 544$ (3)
$\mathrm{Co}(1)-\mathrm{C}(1)$	1.763 (10)	$\mathrm{Co}(1)-\mathrm{C}(2)$	1.906 (9)
$\mathrm{Co}(2)-\mathrm{C}(2)$	2.006 (9)	$\mathrm{Co}(2)-\mathrm{C}(3)$	1.788 (12)
$\mathrm{Co}(2)-\mathrm{C}(4)$	1.785 (10)	$\mathrm{Co}(3)-\mathrm{C}(5)$	1.798 (12)
$\mathrm{Co}(3)-\mathrm{C}(7)$	1.910 (9)	$\mathrm{Co}(3)-\mathrm{C}(6)$	1.809 (11)
$\mathrm{Co}(4)-\mathrm{C}(8)$	1.782 (12)	$\mathrm{Co}(4)-\mathrm{C}(7)$	1.968 (9)
$\mathrm{Co}(4)-\mathrm{C}(9)$	1.796 (12)		
$\mathrm{Co}(2)-\mathrm{Co}(1)-\mathrm{Co}(4)$) 88.0 (1)	$\mathrm{Co}(1)-\mathrm{Co}(2)-\mathrm{Co}(3)$) 91.6 (1)
$\mathrm{Co}(2)-\mathrm{Co}(3)-\mathrm{Co}(4)$) $91 \cdot 3(1)$	$\mathrm{Co}(1)-\mathrm{Co}(4)-\mathrm{Co}(3)$) 89.1 (1)
$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2)$	68.7 (1)	$\mathrm{P}(1)-\mathrm{Co}(2)-\mathrm{P}(2)$	68.8 (1)
$\mathbf{P}(1)-\mathrm{Co}(3)-\mathrm{P}(2)$	68.0 (1)	$\mathrm{P}(1)-\mathrm{Co}(4)-\mathrm{P}(2)$	68.6 (1)
$\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(3)$	173.4 (1)	$\mathrm{P}(2)-\mathrm{Co}(1)-\mathrm{P}(3)$	105.6 (1)
$\mathrm{Co}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	174.8 (7)	$\mathrm{Co}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	144.6 (9)
$\mathrm{Co}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	$133 \cdot 8$ (9)	$\mathrm{Co}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$176 \cdot 6$ (1)
$\mathrm{Co}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	174.8 (10)	$\mathrm{Co}(3)-\mathrm{C}(5)-\mathrm{O}(5)$	177.4 (12)
$\mathrm{Co}(3)-\mathrm{C}(6)-\mathrm{O}(6)$	175.0 (11)	$\mathrm{Co}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	141.2 (9)
$\mathrm{Co}(4)-\mathrm{C}(7)-\mathrm{O}(7)$	137.4 (9)	$\mathrm{Co}(4)-\mathrm{C}(8)-\mathrm{O}(8)$	177.0 (13)
$\mathrm{Co}(4)-\mathrm{C}(9)-\mathrm{O}(9)$	174.4 (10)	$\mathrm{Co}(1)-\mathrm{C}(2)-\mathrm{Co}(2)$	$81 \cdot 1$ (3)
$\mathrm{Co}(3)-\mathrm{C}(7)-\mathrm{Co}(4)$	$81 \cdot 3$ (3)		

recrystallization. Crystal dimensions $0.15 \times 0.28 \times$ 0.35 mm ; Nicolet $R 3 \mathrm{~m} / \mu$ update of $P 2_{1}$ diffractometer; data collected in the ω-scan mode ($3 \leq 2 \theta \leq$ 45°), scan rate 4 to $29 \cdot 3^{\circ} \mathrm{min}^{-1}$, graphite-monochromated Mo $K \alpha$ radiation, lattice parameters from a least-squares refinement of 25 reflections ($38 \cdot 64 \leq$ $2 \theta \leq 44 \cdot 96^{\circ}$), angles measured by a centering routine; Laue symmetry and intensity statistics consistent with the space group $P 2_{1}$; monitored reflections 135 and 207 showed a 25% decay, data corrected by linear interpolation using check reflections and the 15 reflections in the automatic centering routine when appropriate; 4300 total reflections, 3366 independent reflections measured ($-11 \leq h \leq 10,0$ $\leq k \leq 22,0 \leq l \leq 14), \quad R_{\text {merge }}=0.007,2976 \geq 3 \sigma(l)$; Lorentz-polarization corrections and a ψ-scan-based empirical absorption correction (transmission factors 0.66 to 0.787); structure solved by direct methods; block-cascade least-squares refinement; H atoms located in difference map but allowed to ride at fixed distance from attached atom, single isotropic thermal parameters were refined for the phenyl H atoms and for the cyclohexyl H atoms; the structure contained a molecule of toluene which was slowly lost during data collection leading to a number of disordered solvent peaks in the difference maps. The seven largest peaks were refined and then fixed, but no attempt was made to constrain a toluene molecule. Final $R=0.044, w R=0.059$ for 498 parameters and 2976 reflections ($R=0.0517$, $w R=0.0609$ for all data), $S=1.045,(\Delta / \sigma)_{\max }=0.021,(\Delta / \sigma)_{\mathrm{av}}=0.006 ;$ largest peaks in final difference map +0.53 and $-0.48 \mathrm{e} \AA^{-3} ; \quad \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized with $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.000024 F_{c}^{2}\right]^{-1} ;$ extinction correction $F^{*}=$ $F_{c}\left[1 \cdot 0+4 \cdot 1(3) \times 10^{-6} F_{c}^{2} / \sin (2 \theta)\right]^{0.25}$ applied. All computer programs supplied by Nicolet (Nicolet Instrument Corporation, 1986) for Desktop 30

Microeclipse and Nova 4/c configuration; atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974, Vol. IV). Table 1 lists atomic positional parameters for $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$ while Table 2 gives bond distances and valence angles.* Fig. 1 is a drawing of the PCy_{3}-substituted cluster.

Discussion. The structure of $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2^{-}}$ $\left(\mathrm{PCy}_{3}\right)$ consists of four Co atoms in a planar, rectangular array and is capped by a pair of $\mu_{4^{-}}$ phenylphosphinidene groups to give a closo octahedral core commonly observed in this genre of cluster. Asymmetric carbonyl-bridged and non-carbonylbridged $\mathrm{Co}-\mathrm{Co}$ bonds are observed as a result of the destabilizing effect of the large PCy_{3} ligand which possesses a cone angle of 170° (Tolman, 1977). At the site of PCy_{3} substitution the carbonyl-bridged Co-Co bond length is 2.544 (2) \AA while the non-carbonyl-bridged $\mathrm{Co}-\mathrm{Co}$ bond length is 2.806 (1) \AA. These bond lengths are 0.018 (2) and $0 \cdot 129$ (1) \AA longer than the opposite carbonyl-bridged and non-carbonyl-bridged Co-Co bonds, respectively. Similar bond-length alterations have been observed in $\mathrm{Co}_{4}(\mathrm{CO})_{8}\left(\mu_{4}-\mathrm{PPh}\right)_{2}(\mathrm{dmpe})$ (Schulman, Richmond, Watson \& Nagl, 1989) and $\mathrm{Co}_{4}(\mathrm{CO})_{8}\left(\mu_{4}-\mathrm{PPh}\right)_{2}{ }^{-}$ $\left(\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)$ (Richmond \& Kochi, 1987a) and are attributed to unfavorable P-ligand/cluster interactions which are minimized through $\mathrm{Co}-\mathrm{Co}$ bond lengthening.

[^1]

Fig. 1. Diagram of $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$ with the thermal ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.

Another indication of unfavorable intramolecular $\mathrm{PCy}_{3} /$ cluster interactions is seen in the disposition of the μ_{4}-phenylphosphinidene group that is cis to the PCy_{3}. The plane formed by the phenyl group bound to $\mathrm{P}(2)$ and the tetracobalt plane possesses a dihedral angle of $81.8(7)^{\circ}$ which represents a tipping of $8.1(6)^{\circ}$ between $P(2)-C(20)$ and the normal to the tetracobalt plane. A near perpendicular relation of these planes is found in the parent cluster (Ryan \& Dahl, 1975; Ryan, Pittman, O’Connor \& Dahl, 1980). Furthermore, the twist angle between the μ_{4}-phenylphosphinidene group is $77.3(8)^{\circ}$. The phenyl group associated with $\mathrm{P}(2)$ twists and tips from its preferred orientation (see above) as a result of close intramolecular contacts with the ancillary PCy_{3} ligand, consistent with previous reports on structurally similar μ_{4}-phenylphosphinidene-capped clusters (Ryan, Pittman, O'Conor \& Dahl, 1980; Richmond \& Kochi, 1986b, 1987b).

The terminal $\mathrm{Co}-\mathrm{CO}$ distances range from $1.763(10)$ to $1.809(11) \AA$ while the bridging Co-CO distances are asymmetric, ranging from 1.906 (9) to 2.006 (9) \AA. The remaining $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{P}$ and $\mathrm{C}-\mathrm{C}$ distances are unexceptional and require no comment.

The reaction of $\mathrm{Co}_{4}(\mathrm{CO})_{9}\left(\mu_{4}-\mathrm{PPh}\right)_{2}\left(\mathrm{PCy}_{3}\right)$ with different phosphines is planned in order to test the generality of thermodynamic control in determining the location and stereochemistry of incoming phosphine ligands.

We thank the Welch Foundation [WHW (P-074) and MGR (B-1039)] and the UNT faculty research program for financial support.

References

Don, M. J., Richmond, M. G., Watson, W. H. \& Nagl, A. (1989a). J. Organomet. Chem. 372, 417-435.
Don, M. J., Richmond, M. G., Watson, W. H. \& Nagl, A. (1989b). Acta Cryst. C45, 736-739.
Nicolet Instrument Corporation (1986). SHELXTL for Desktop 30 (Microeclipse). PN-269-1040340, April 1986. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Richmond, M. G. \& Kochi, J. K. (1986a). Inorg. Chem. 25, 656-665.
Richmond, M. G. \& Kochi, J. K. (1986b). Inorg. Chem. 25, 1334-1345.
Richmond, M. G. \& Kochi, J. K. (1987a). Organometallics, 6, 254-265.
Richmond, M. G. \& Kochi, J. K. (1987b). Inorg. Chim. Acta, 126, 83-90.
Ryan, R. C. \& Dahl, L. F. (1975). J. Am. Chem. Soc. 97, 6904-6906.
Ryan, R. C., Pittman, C. U. Jr, O'Connor, J. P. \& Dahl, L. F. (1980). J. Organomet. Chem. 193, 243-269.

Schulman, C. L., Richmond, M. G., Watson, W. H. \& Nagl, A. (1989). J. Organomet. Chem. 368, 367-384.

Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

[^0]: * Authors to whom correspondence should be addressed.
 \dagger Present address: Faculty of Technology, University of Zagreb, Zagreb, Yugoslavia.

[^1]: * Lists of H -atom coordinates, anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53325 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

